James Webb Space Telescope

James Webb Space Telescope


NASA's much awaited James Webb Space Telescope (JWST), which replaced the Hubble Space Telescope, was launched on December 25, 2021. The project incurred substantial cost overruns; the original $0.5 billion budget was later expanded to almost $10 billion. Work on the project started in 1996.

JWST reached a major mission milestone on January 8, 2022, when it achieved complete deployment. 

 The telescope reached its designated destination on January 24, positioning itself to commence its groundbreaking observations of the universe. The deployment and arrival at its destination are critical steps in ensuring the functionality and success of the mission, allowing JWST to contribute to our understanding of the cosmos. it arrived at its destination.On March 16, 2022, it focused all its mirrors on a single star for the first time.

On July 12, 2022, NASA released JWST's initial set of full-resolution science images, featuring the Carina Nebula, the Eight-Burst Nebula, Stephan’s Quintet (a group of galaxies), and a galaxy cluster. Additionally, NASA presented an analysis of the composition of the exoplanet WASP-96b and discreetly unveiled an image of Jupiter.

Shortly after, researchers identified the oldest galaxy ever discovered in JWST data. This galaxy dates back to just 300 million years after the big bang, making it 100 million years older than the previously identified oldest galaxy, GN-z11.


How does the James Webb Space Telescope (JWST) work?

The James Webb Space Telescope (JWST) operates similarly to traditional telescopes by capturing and focusing light to extend our view of the cosmos. However, it diverges by observing in the infrared part of the electromagnetic spectrum, detecting heat instead of visible light like our eyes. This capability, similar to a night vision camera, allows JWST to study cooler and more distant celestial objects. Its significant size enhances light collection, aiding in the observation of fainter and smaller entities. Being in space eliminates atmospheric interference, providing clearer and more detailed data, making JWST a powerful tool for exploring the universe.



How far can the James Webb Space Telescope "see"?

Why is it that galaxies in the early universe are visible to the JWST because of this far-off view? Something is moving away from us faster the further distant it is in the universe. Redshift, which is experienced by fast objects, causes the item to appear redder. Something that is extremely far away eventually turns redder than red and enters the infrared spectrum. JWST's ability to view farther than previous telescopes is due to this. The oldest items are those that are farthest away since light takes time to reach us. Time travel is possible with telescopes like Hubble and JWST. Because JWST operates in the infrared, it can see farther than Hubble and almost all the way back to 13.7 billion years ago, when the cosmos first began.



The James Webb Space Telescope is currently where?

The L2 Lagrange point is the location around which the JWST revolves. This is 1.5 million kilometers beyond Earth so that Earth's heat will not obstruct its view. Because L2 is a gravity well, we don't need as much fuel to maintain it there as we would if it were floating aimlessly in space. The fact that L2 circles the sun with us is also helpful because it means we can always talk to each other and download pictures from the telescope. 


No comments:

Post a Comment